Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Mechanical behaviour of granular media in flexible boundary plane strain conditions: experiment and level-set discrete element modelling
 
  • Details

Mechanical behaviour of granular media in flexible boundary plane strain conditions: experiment and level-set discrete element modelling

Source
Acta Geotechnica
ISSN
18611125
Date Issued
2021-01-01
Author(s)
Bhattacharya, Debayan
Kawamoto, Reid
Karapiperis, Konstantinos
Andrade, José E.
Prashant, Amit  
DOI
10.1007/s11440-020-00996-8
Volume
16
Issue
1
Abstract
This article presents the results of level-set (LS) discrete element method (DEM) simulations with experimental comparisons of flexible boundary plane strain tests in granular media. The grain-scale micromechanics at the particle level is captured well with LS-DEM, while the overall macroscopic response of the specimen is in quite good agreement with the simulation results. Onset and evolution of localized zones of shear strain accompanied by a significant amount of grain rotation could be well apprehended in the simulations, while the bulging of the specimen could be noticed in the experimental findings as well as in the model predictions. Multiple zones of shear strain accumulation in conjugate arrays were also observed on subsequent biaxial shearing of the sand specimen. The computational results furnish a quantitative estimate of the evolution of force chains and grain fabric orientation. Initially, these force chains were isotropic which on further deformation oriented in the direction of loading, and the grains aligned themselves in their preferred fabric orientation and remained in that fashion till the end of biaxial loading.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/23806
Subjects
Discrete element method | Flexible boundaries | Granular media | Level set | Plane strain
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify