Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Metrics Matter: Accurately Defining Energy Efficiency in Desalination
 
  • Details

Metrics Matter: Accurately Defining Energy Efficiency in Desalination

Source
Journal of Heat Transfer
ISSN
00221481
Date Issued
2020-12-01
Author(s)
Bouma, Andrew T.
Swaminathan, Jaichander
Lienhard, John H.
DOI
10.1115/1.4048250
Volume
142
Issue
12
Abstract
Energy cost contributes a large portion of the overall cost of desalinated water. Improving the energy efficiency of desalination plants is therefore a primary design goal. However, accurately evaluating and comparing the energy consumption of desalination plants that use different forms and grades of energy is difficult, especially for power-water coproduction systems in which primary energy (PE) consumption leads to both salable electricity and potable water. The power plant converts PE into grades of thermal energy and electricity usable by the desalination plant. To fully capture the thermodynamic and economic cost of energy, and to fairly compare desalination systems that use different grades of input energy, we must compare energy consumption not at the point where energy enters the desalination plant itself, but as PE consumption entering the power plant. This paper investigates a variety of metrics for comparing the energy and exergy consumption attributable to desalination in coproduction plants. Previous results have shown that reverse osmosis (RO) is approximately twice as efficient as multiple effect distillation (MED) on a PE basis. We then compare the PE consumption of MED and RO from a thermoeconomic perspective. The entropy generation at the RO membrane and in the MED effects are derived in similar terms, which enables a comparison of the overall heat transfer coefficient in an MED system to the permeability of an RO membrane. RO outperforms MED in energy efficiency because of a balance of material costs, transport coefficients, and cost of energy.
Publication link
https://asmedigitalcollection.asme.org/heattransfer/article-pdf/142/12/122101/6574257/ht_142_12_122101.pdf
URI
https://d8.irins.org/handle/IITG2025/25673
Subjects
desalination | efficiency | exergy | primary energy | thermodynamics
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify