Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. A comparative study of reverse flow chromatographic reactor and fixed bed reactor: A multi-objective optimization approach
 
  • Details

A comparative study of reverse flow chromatographic reactor and fixed bed reactor: A multi-objective optimization approach

Source
Chemical Engineering Research and Design
ISSN
02638762
Date Issued
2023-05-01
Author(s)
Srivastava, Shashwat
Padhiyar, Nitin  
DOI
10.1016/j.cherd.2023.03.022
Volume
193
Abstract
In this study, we have carried out a comparative analysis of a fixed bed reactor (FBR) and reverse flow chromatographic reactor (RFCR) for a series reaction. This comparison has been carried out using mathematical model based single and multi-objective optimization. In addition, since the model merely approximates the actual process, there is an inherent presence of uncertainty in it. To account for the uncertainty, optimization is done considering the uncertainty in the key model parameters. Three objective functions are used in this work for the comparative study, namely yield, selectivity, and conversion. The decision variables used in the optimization problem are the inlet concentration, Damkohler number, and dimensionless switching time. The multi-objective optimization results have been analysed in terms of optimal Pareto fronts for three bi-objective and one tri-objective optimization problems. A detailed analysis of the Pareto fronts for both the reactors is presented for five distinct representative Pareto points. The results of the work indicated the superiority of RFCR over FBR. In particular, a representative Pareto point solution of 3-objective problem in RFCR corresponds to 51.36% higher yield, 27.06% higher selectivity and 19.15% higher conversion as compared to FBR.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/26806
Subjects
Fixed bed reactor | Multi-objective optimization | NSGA-II | Pareto optimality | Reverse flow chromatographic reactor
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify