Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Affine semigroups of maximal projective dimension
 
  • Details

Affine semigroups of maximal projective dimension

Source
Collectanea Mathematica
ISSN
00100757
Date Issued
2023-09-01
Author(s)
Bhardwaj, Om Prakash
Goel, Kriti
Sengupta, Indranath  
DOI
10.1007/s13348-022-00370-9
Volume
74
Issue
3
Abstract
A submonoid of N<sup>d</sup> is of maximal projective dimension (MPD) if the associated affine semigroup ring has the maximum possible projective dimension. Such submonoids have a nontrivial set of pseudo-Frobenius elements. We generalize the notion of symmetric semigroups, pseudo-symmetric semigroups, and row-factorization matrices for pseudo-Frobenius elements of numerical semigroups to the case of MPD -semigroups in N<sup>d</sup>. Under suitable conditions, we prove that these semigroups satisfy the generalized Wilf’s conjecture. We prove that the generic nature of the defining ideal of the associated semigroup ring of an MPD -semigroup implies uniqueness of row-factorization matrix for each pseudo-Frobenius element. Further, we give a description of pseudo-Frobenius elements and row-factorization matrices of gluing of MPD -semigroups. We prove that the defining ideal of gluing of MPD -semigroups is never generic.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/25742
Subjects
Frobenius elements | Generic toric ideals | Maximal projective dimension semigroups | Pseudo-Frobenius elements | Row-factorization matrices | ≺ -symmetric semigroups
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify