Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Functional Nanomaterials Based Electrochemical and Chemiresistive Sensors for Hydrogen Detection: A Review
 
  • Details

Functional Nanomaterials Based Electrochemical and Chemiresistive Sensors for Hydrogen Detection: A Review

Source
Chemistry an Asian Journal
ISSN
18614728
Date Issued
2025-01-01
Author(s)
Ranjan, Pushpesh
Raizada, Pankaj
Singh, Pardeep
Devi, Anjana
Saha, Biswajit  
Singh, Archana
DOI
10.1002/asia.202500712
Abstract
Hydrogen is a lightweight, small molecule that is highly flammable and causes an explosion when exposed to air by >4%. It is a colorless and odorless gas; hence, its physical examination is challenging. Therefore, a reliable detection tool is highly demanded to avoid the risk associated with their explosion. Nonetheless, hydrogen sensing is a difficult task that needs a sensitive sensor. Metal nanoparticles (MNPs) and two-dimensional (2D) nanomaterials-based sensors have gained remarkable attention for hydrogen detection. They offer excellent properties such as high active surface area, active sites, porosity, and long-term stability, which make them promising materials for sensor applications. Moreover, a sheet-like structure and flat surface favors a fast adsorption and desorption process. Therefore, the sensing performance of the sensor notably improved. This review deals with the MNPs and 2D nanomaterials such as metal oxides and sulfides, graphene, MXene, metal-organic framework, and polymeric hybrid nanocomposite-based electrochemical and chemiresistive sensors for hydrogen detection. Furthermore, the insight into the mechanistic approaches for hydrogen sensing has been discussed. Lastly, the challenges associated with hydrogen detection, their future advancements, and their commercial perspective have been addressed.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/20702
Subjects
Chemiresistive | Electrochemical | Hydrogen | Metal oxides | MXenes | Nanomaterials | Sensors
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify