Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Supramolecular self-assembly of triazine-based small molecules: Targeting the endoplasmic reticulum in cancer cells
 
  • Details

Supramolecular self-assembly of triazine-based small molecules: Targeting the endoplasmic reticulum in cancer cells

Source
Nanoscale
ISSN
20403364
Date Issued
2019-02-21
Author(s)
Ghosh, Chandramouli
Nandi, Aditi
Basu, Sudipta  
DOI
10.1039/c8nr08682f
Volume
11
Issue
7
Abstract
The endoplasmic reticulum (ER) is one of the most important organelles controlling myriads of cellular functions including protein folding/misfolding/unfolding, calcium ion homeostasis and lipid biosynthesis. Subsequently, due to its functional dysregulation in cancer cells, it has emerged as an interesting target for anti-cancer therapy. However, specific targeting of the ER in cancer cells remains a major challenge due to the lack of ER-selective chemical tools. Furthermore, for performing multiple cellular functions the ER is dependent on the nucleus through complicated cross-talk. Herein, we have engineered a supramolecular self-assembled hexameric rosette structure from two small molecules: tri-substituted triazine and 5-fluorouracil (5-FU). This rosette structure consists of an ER-targeting moiety with a fluorescence tag, an ER-stress inducer and a nuclear DNA damaging drug simultaneously, which further self-assembled into an ER-targeting spherical nano-scale particle (ER-NP). These ER-NPs internalized into HeLa cervical cancer cells by macropinocytosis and specifically localized into the ER to induce ER stress and DNA damage leading to cell death through apoptosis. Interestingly, ER-NPs initiated autophagy, inhibited by a combination of ER-NPs and chloroquine (CQ) to augment cancer cell death. This work has the potential to exploit the concept of supramolecular self-assembly into developing novel nano-scale materials for specific sub-cellular targeting of multiple organelles for future anti-cancer therapy.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/23343
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify