Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. A note on the stability of solutions to quasilinear elliptic equations
 
  • Details

A note on the stability of solutions to quasilinear elliptic equations

Source
Advances in Calculus of Variations
ISSN
18648258
Date Issued
2013-10-01
Author(s)
Tyagi, Jagmohan  
DOI
10.1515/acv-2012-0014
Volume
6
Issue
4
Abstract
In this note, we prove a stability theorem for a class of quasilinear elliptic equations -δ<inf>p</inf> u = a(x)u-f(x,u) in Ω, u=0 on δΩ, where δ<inf>p</inf> u= div(/∇<inf>u</inf>u/ <sup>p-2</sup>∇<inf>u</inf>) 2 ≤ p < p < ∞ ,Ω ⊂ &Rdbl<inf>N</inf> is an open, smooth and bounded subset. We show that if u is an unstable solution of the above problem, then u vanishes at some point of Ω. In this work, a and f may change sign. © de Gruyter 2013.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/21137
Subjects
P-laplacian | Stability | Zeros
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify