Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Evaluation of Maltose Binding Protein-Tagged hATR Kinase Domain Catalytic Activity with p53 Ser-15 Phosphorylation
 
  • Details

Evaluation of Maltose Binding Protein-Tagged hATR Kinase Domain Catalytic Activity with p53 Ser-15 Phosphorylation

Source
Biochemistry
ISSN
00062960
Date Issued
2018-11-27
Author(s)
Bhakuni, Rashmi
Shaik, Althaf
Kirubakaran, Sivapriya  
DOI
10.1021/acs.biochem.8b00845
Volume
57
Issue
47
Abstract
DNA damage response (DDR) pathways form an integral part of the body's repair machinery, and ATR (ataxia-telangiectasia and Rad3-related kinase) protein is one of the key mediators in the DDR pathway that helps in maintaining genomic integrity. A growing body of evidence suggests that inhibition of ATR can help sensitize tumor cells to combinatorial treatment. However, specific ATR kinase inhibitors have largely remained elusive until now. Despite much interest in the protein for more than a decade, there has been little characterization of only the kinase domain, an essential target site for a variety of ATR inhibitors. Here, we report our findings for the bacterial expression, purification, and biological characterization of this potentially important recombinant kinase domain, which could further be considered for structure elucidation studies. Introduction of a solubility partner, i.e., maltose binding protein (MBP), at the N-terminus of the ATR kinase domain generated a soluble form of the protein, i.e., MBP-tagged hATR kinase domain (MBP-ATR-6X His), which was found to be catalytically active, as assessed by substrate p53 Ser-15 phosphorylation (EPPLSQEAFADLWKK). Our results also highlight the prospect of utilization of the overexpressed recombinant ATR kinase domain in characterization of kinase domain specific inhibitors.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/22709
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify