Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Affine Semigroups of Maximal Projective Dimension
 
  • Details

Affine Semigroups of Maximal Projective Dimension

Source
Seminaire Lotharingien De Combinatoire
Date Issued
2022-01-01
Author(s)
Bhardwaj, Om Prakash
Goel, Kriti
Sengupta, Indranath  
Issue
86
Abstract
A submonoid of N<sup>d</sup> is of maximal projective dimension (MPD) if the associated affine semigroup k-algebra has the maximum possible projective dimension. Such submonoids have a nontrivial set of pseudo-Frobenius elements. We generalize the notion of symmetric semigroups, pseudo-symmetric semigroups, and row-factorization matrices for pseudo-Frobenius elements of numerical semigroups to the case of MPDsemigroups in N<sup>d</sup>. We prove that under suitable conditions these semigroups satisfy the generalizedWilf’s conjecture. We prove that the generic nature of the defining ideal of the associated semigroup algebra of an MPD-semigroup implies the uniqueness of the row-factorization matrix for each pseudo-Frobenius element. Further, we give a description of pseudo-Frobenius elements and row-factorization matrices of gluing of MPD-semigroups. We prove that the defining ideal of gluing of MPD-semigroups is never generic.
URI
https://d8.irins.org/handle/IITG2025/26255
Subjects
generic toric ideals | MPD-semigroup | pseudo-Frobenius elements | row-factorization matrix
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify