Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Nonlinear analysis of reinforced concrete plane frames exposed to fire using direct stiffness method
 
  • Details

Nonlinear analysis of reinforced concrete plane frames exposed to fire using direct stiffness method

Source
Advances in Structural Engineering
ISSN
13694332
Date Issued
2018-05-01
Author(s)
Prakash, P. Ravi
Srivastava, Gaurav
DOI
10.1177/1369433217737118
Volume
21
Issue
7
Abstract
This article presents a framework based on the direct stiffness method for nonlinear thermo-mechanical analysis of reinforced concrete plane frames subjected to fire. It accounts for geometric nonlinearity, material nonlinearity, and nonlinear thermal gradients and incorporates two-way coupling between thermal and structural analyses. Force deformation relations are derived from classical Euler–Bernoulli beam theory and are expressed in terms of temperature-dependent stability and bowing functions. This is one of the unique features of proposed framework and allows a coarser spatial discretization to be used as opposed to full finite element–based approaches (such as SAFIR [registered trademark of the software SAFIR developed at the University of Liege]). The cross sections of the structural members are discretized with two-dimensional meshes for thermal analysis while structural analysis utilizes a line element based on direct stiffness method. Equivalent bending and axial rigidities of this line element are computed using several fibers along the length of the member, passing through the nodes of the two-dimensional mesh used for thermal analysis. The total strain at each fiber is decomposed into mechanical, thermal, creep, and transient thermal components. A discrete damage parameter is introduced at fiber level to ensure irreversibility of crushing and cracking in accordance with relevant constitutive laws. Five numerical examples are presented to demonstrate the accuracy and efficacy of the developed framework with respect to theoretical solutions, experimental observations, and some of the existing macro- and micro-finite element–based approaches. It is found that the developed framework can predict the response of reinforced concrete structures very well.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/22865
Subjects
direct stiffness method | fiber model | fire resistance | nonlinear thermal gradients | reinforced concrete structures | thermo-mechanical analysis
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify