Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Low Complexity Gain-Phase Error Correction for Adaptive Underdetermined DOA Estimation in Sensor Arrays
 
  • Details

Low Complexity Gain-Phase Error Correction for Adaptive Underdetermined DOA Estimation in Sensor Arrays

Source
IEEE Sensors Letters
Date Issued
2025-01-01
Author(s)
Ghosh, Shouharda
George, Nithin  
DOI
10.1109/LSENS.2024.3520524
Volume
9
Issue
1
Abstract
Direction of arrival (DOA) estimation techniques are essential for determining the locations of signal sources using sensor arrays. For a uniform linear array, the number of detectable sources is limited to one less than the number of sensors. Sparse linear arrays overcome this limitation by leveraging the difference array to estimate more sources than sensors. However, gain and phase mismatches among sensors can impair accuracy. Existing algorithms to correct these mismatches are computationally demanding, making them unsuitable for low-power Internet-of-Things (IoT) devices. This article proposes a novel method to integrate gain-phase compensation into adaptive filtering-based DOA estimation algorithms. The proposed approach reduces computational complexity and improves performance, especially in low SNR and low snapshot scenarios, facilitating efficient deployment in low-power devices.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/28315
Subjects
adaptive filtering | coarray LMS | direction of arrival (DOA) estimation | gain-phase error | low complexity | Sensor signal processing
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify