Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Deep learning approach for inverse design of metasurfaces with a wider shape gamut
 
  • Details

Deep learning approach for inverse design of metasurfaces with a wider shape gamut

Source
Optics Letters
ISSN
01469592
Date Issued
2022-05-15
Author(s)
Panda, Soumyashree S.
Choudhary, Sumit
Joshi, Siddharth
Sharma, Satinder K.
Hegde, Ravi S.  
DOI
10.1364/OL.458746
Volume
47
Issue
10
Abstract
While the large design degrees of freedom (DOFs) give metasurfaces a tremendous versatility, they make the inverse design challenging. Metasurface designers mostly rely on simple shapes and ordered placements, which restricts the achievable performance. We report a deep learning based inverse design flow that enables a fuller exploitation of the meta-atom shape. Using a polygonal shape encoding that covers a broad gamut of lithographically realizable resonators, we demonstrate the inverse design of color filters in an amorphous silicon material platform. The inverse-designed transmission-mode color filter metasurfaces are experimentally realized and exhibit enhancement in the color gamut.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/26078
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify