Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Scalable Estimation of Epidemic Thresholds via Node Sampling
 
  • Details

Scalable Estimation of Epidemic Thresholds via Node Sampling

Source
Sankhya A
ISSN
0976836X
Date Issued
2022-06-01
Author(s)
Dasgupta, Anirban  
Sengupta, Srijan
DOI
10.1007/s13171-021-00249-0
Volume
84
Issue
1
Abstract
Infectious or contagious diseases can be transmitted from one person to another through social contact networks. In today’s interconnected global society, such contagion processes can cause global public health hazards, as exemplified by the ongoing Covid-19 pandemic. It is therefore of great practical relevance to investigate the network transmission of contagious diseases from the perspective of statistical inference. An important and widely studied boundary condition for contagion processes over networks is the so-called epidemic threshold. The epidemic threshold plays a key role in determining whether a pathogen introduced into a social contact network will cause an epidemic or die out. In this paper, we investigate epidemic thresholds from the perspective of statistical network inference. We identify two major challenges that are caused by high computational and sampling complexity of the epidemic threshold. We develop two statistically accurate and computationally efficient approximation techniques to address these issues under the Chung-Lu modeling framework. The second approximation, which is based on random walk sampling, further enjoys the advantage of requiring data on a vanishingly small fraction of nodes. We establish theoretical guarantees for both methods and demonstrate their empirical superiority.
Publication link
https://link.springer.com/content/pdf/10.1007/s13171-021-00249-0.pdf
URI
https://d8.irins.org/handle/IITG2025/25111
Subjects
62F10 (primary) | 68W20, 68W25 | Configuration model | Epidemic threshold | Epidemiology | Networks | Random walk | Sampling
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify