Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Parameterized non-circular deviation from the Kerr paradigm and its observational signatures: extreme mass ratio inspirals and Lense-Thirring effect
 
  • Details

Parameterized non-circular deviation from the Kerr paradigm and its observational signatures: extreme mass ratio inspirals and Lense-Thirring effect

Source
Journal of Cosmology and Astroparticle Physics
Date Issued
2025-04-01
Author(s)
Ghosh, Rajes
Chakravarti, Kabir
DOI
10.1088/1475-7516/2025/04/037
Volume
2025
Issue
4
Abstract
Recent gravitational wave observations and shadow imaging have demonstrated the astonishing consistency of the Kerr paradigm despite all the special symmetries assumed in deriving the Kerr metric. Hence, it is crucial to test the presence of these symmetries in astrophysical scenarios and constraint possible deviations from them, especially in strong field regimes. With this motivation, the present work aims to investigate the theoretical consequences and observational signatures of non-circularity in a unified theory-agnostic manner. For this purpose, we construct a parametrized non-circular metric with small deviations from Kerr. This metric preserves the other properties of Kerr, such as stationarity, axisymmetry, asymptotic flatness, and the equatorial reflection symmetry. Apart from the resulting mathematical simplifications, this assumption is crucial to disentangle the consequences of relaxing circularity from other properties. Then, after discussing various novel theoretical consequences, we perform a detailed analysis of extreme mass ratio inspirals and Lense-Thirring precession in the context of this newly constructed metric. Our study clearly shows the promising prospects of detecting and constraining even a slight non-circular deviation from the Kerr paradigm using the future gravitational wave observations by the Laser Interferometer Space Antenna.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/28208
Subjects
gravitational waves / theory | Gravitational waves in GR and beyond: theory | gravity | modified gravity
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify