Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Applicability of Waste from Al Industry toward Dephosphorization of Hot Metal in Primary Steel Making
 
  • Details

Applicability of Waste from Al Industry toward Dephosphorization of Hot Metal in Primary Steel Making

Source
Steel Research International
ISSN
16113683
Date Issued
2025-03-01
Author(s)
Padala, Himaja
Das, Swagat
Pal, Varinder
Goyal, Prateek
Misra, Superb  
Paliwal, Manas
DOI
10.1002/srin.202400307
Volume
96
Issue
3
Abstract
Managing industrial waste is a global challenge. Red mud is a byproduct of the aluminum industry posing serious concerns. The presence of FeO and CaO in red mud makes it a potential DeP flux. Red mud has been utilized as a DeP flux in previous studies, but these studies deal with low Si content and no P<inf>2</inf>O<inf>5</inf> content in the red mud. However, certain steel makers have high initial Si content (0.6–0.7 wt%) in the hot metal, and with increasing demand for low P steel, new dephosphorization fluxes need to be explored. Addressing this gap, this study investigates red mud's potential as a flux for dephosphorization in hot metal with elevated Si levels. Conducting slag–metal equilibrium experiments at 1350 °C, using red mud-based fluxes, the research achieves a 40% dephosphorization degree under optimized conditions of double deslagging and fluxing. Analysis via wet chemical methods and inductively coupled plasma mass spectrometry confirms the effectiveness of the approach. Furthermore, thermodynamic calculations highlight the influence of O<inf>2</inf> partial pressure and Si content on dephosphorization efficacy. Through laboratory experiments and theoretical insights, this study provides a valuable roadmap for leveraging red mud as a sustainable flux in hot metal dephosphorization processes, contributing to both waste management and steel production efficiency.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/28541
Subjects
dephosphorization indexes | double deslagging | double fluxing | ICP-MS | red mud
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify