Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Mathematics
  4. MATH Publications
  5. On the bifurcation for fractional Laplace equations
 
  • Details

On the bifurcation for fractional Laplace equations

Date Issued
2016-06-01
Author(s)
Dwivedi, Gaurav
Tyagi, Jagmohan
Verma, Ram Baran
Abstract
In this paper, we consider the bifurcation problem for fractional Laplace equation
(??)su=?u+f(?,x,u)in ?,u=0in Rn??,
where ??Rn,n>2s(0<s<1) is an open bounded subset with smooth boundary, (??)s stands for the fractional Laplacian. We show that a continuum of solutions bifurcates out from the principal eigenvalue ?1 of the eigenvalue problem
(??)sv=?vin?,v=0inRn??,
and, conversely.
URI
http://arxiv.org/abs/1606.04452
https://d8.irins.org/handle/IITG2025/20024
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify