Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Coalescence of co-infection and antimicrobial resistance with SARS-CoV-2 infection: The blues of post-COVID-19 world
 
  • Details

Coalescence of co-infection and antimicrobial resistance with SARS-CoV-2 infection: The blues of post-COVID-19 world

Source
Case Studies in Chemical and Environmental Engineering
Date Issued
2021-06-01
Author(s)
Mazumder, Payal
Kalamdhad, Ajay
Chaminda, GG Tushara
Kumar, Manish  
DOI
10.1016/j.cscee.2021.100093
Volume
3
Abstract
In viral respiratory infections, bacterial co-pathogens are widely known to co-infect, and they significantly increase the morbidity and mortality rate. During the influenza season, the advent of 2019-nCoV (novel coronavirus) has led to the widespread use of oral and intravenous antibiotics and inhibitors of neuraminidase enzyme. Owing to causes such as extended intubation, the ubiquitous use of intrusive catheters, and compromised host immunity, coronavirus disease (COVID-19) patients are at heightened risk of secondary bacterial and fungal infections, leading to the difficulty in their treatment. Apart from the pandemic, the primary risk is a likely surge in multidrug resistance. In this work, we evaluated the coalescence of present co-infection alongside the COVID-19 and post-pandemic antimicrobial resistance due to high ongoing drug use for the treatment of COVID-19. We found that while there is currently limited evidence of bacterial infections in COVID-19, available proof supports the restricted use of antibiotics from an antibiotic stewardship viewpoint, primarily upon entry. Paramount attempts should be made to collect sputum and blood culture samples as well as pneumococcal urinary antigen monitoring in order to endorse stringent antibiotic usage. For antimicrobial stewardship, inflammatory markers like procalcitonin have been added, but such biomarkers are typically upraised in COVID-19. Antimicrobials cannot be completely removed in wastewater treatment plants (WWTPs) and once they enter the water environment, possesses a great risk of inducing resistance to drugs in microbes. Hence, their prescription and administrations should be regulated and alternate solutions such as vaccines, preventive measures and personal hygiene should be given top priority. It is imperative to establish an antimicrobial strategy discrete to COVID-19, as this pandemic has caused an outbreak of numerous other associated diseases and has the potential to drive microbial resistance. Coordinated plans are essential for this at the citizen, health-care and policy levels.
Publication link
https://doi.org/10.1016/j.cscee.2021.100093
URI
https://d8.irins.org/handle/IITG2025/25423
Subjects
Antibiotics | Antimicrobial resistance | Co-infection | COVID-19 | SARS-CoV-2
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify