Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Investigation of emission characteristics of NMVOCs over urban site of western India
 
  • Details

Investigation of emission characteristics of NMVOCs over urban site of western India

Source
Environmental Pollution
ISSN
02697491
Date Issued
2019-09-01
Author(s)
Yadav, Ravi
Sahu, L. K.
Tripathi, Nidhi
Pal, D.
Beig, G.
Jaaffrey, S. N.A.
DOI
10.1016/j.envpol.2019.05.089
Volume
252
Abstract
This is the first study to characterize the variation and emission of C<inf>2</inf>-C<inf>5</inf> non-methane volatile organic compounds (NMVOCs) in a semi-urban site of western India based on measurements during February–December 2015. Anthropogenic NMVOCs show clear seasonal dependence with highest in winter and lowest in monsoon season. Biogenic NMVOCs likes isoprene show highest mixing ratios in the pre-monsoon season. The diurnal variation of NMVOC species can be described by elevated values from night till morning and lower values in the afternoon hours. The elevated levels of NMVOCs during night and early morning hours were caused mainly by weaker winds, temperature inversion and reduced chemical loss. The correlations between NMVOCs, CO and NOx indicate the dominant role of various local emission sources. Use and leakage of liquefied petroleum gas (LPG) contributed to the elevated levels of propane and butanes. Mixing ratios of ethylene, propylene, CO, NOx, etc. show predominant emissions from combustion of fuels in automobiles and industries. The Positive Matrix Factorization (PMF) source apportionments were performed for the seven major emission sectors (i.e. Vehicular exhaust, Mixed industrial emissions, Biomass/Fired brick kilns/Bio-fuel, Petrochem, LPG, Gas evaporation, Biogenic). Emissions from vehicle exhaust and industry-related sources contributed to about 19% and 40% of the NMVOCs, respectively. And the rest (41%) was attributed to the emissions from biogenic sources, LPG, gasoline evaporation and biomass burning. Diurnal and seasonal variations of NMVOCs were controlled by local emissions, meteorology, OH concentrations, long-range transport and planetary boundary layer height. This study provides a good reference for framing environmental policies to improve the air quality in western region of India.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/23211
Subjects
Diurnal variation | Emission sources | NMVOCs | PMF | Urban air quality | Vehicular
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify