Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Spectral dimension of spheres
 
  • Details

Spectral dimension of spheres

Source
Communications in Algebra
ISSN
00927872
Date Issued
2020-06-02
Author(s)
Saurabh, Bipul  
DOI
10.1080/00927872.2020.1721514
Volume
48
Issue
6
Abstract
In this paper, we associate a growth graph to a homogeneous space of a compact group. Under certain assumptions, we show that the spectral dimension of a homogeneous space is greater than or equal to summability of the length operator associated with the growth graph. Using this, we compute spectral dimension of spheres. Communicated by Miriam Cohen.
Publication link
https://arxiv.org/pdf/1803.09407
URI
https://d8.irins.org/handle/IITG2025/24122
Subjects
46L87 | 58B32 | 58B34 | growth graph | homogeneous space | length operator | Spectral dimension
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify