Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Machine Learning for New Physics Searches in B → K∗0µ+µ− Decays
 
  • Details

Machine Learning for New Physics Searches in B → K∗0µ+µ− Decays

Source
EPJ Web of Conferences
ISSN
21016275
Date Issued
2024-05-06
Author(s)
Dubey, S.
Browder, T. E.
Kohani, S.
Mandal, R.  
Sibidanov, A.
Sinha, R.
Vahsen, S. E.
DOI
10.1051/epjconf/202429509024
Volume
295
Abstract
We report the status of a neural network regression model trained to extract new physics (NP) parameters in Monte Carlo (MC) simulation data. We utilize a new EvtGen NP MC generator to generate B → K<sup>∗0</sup>µ<sup>+</sup>µ<sup>−</sup> events according to the deviation of the Wilson Coefficient C<inf>9</inf> from its SM value, δC<inf>9</inf>. We train a three-dimensional ResNet regression model, using images built from the angular observables and the invariant mass of the di-muon system, to extract values of δC<inf>9</inf> directly from the MC data samples. This work is intended for future analyses at the Belle II experiment but may also find applicability at other experiments.
Publication link
https://doi.org/10.1051/epjconf/202429509024
URI
https://d8.irins.org/handle/IITG2025/28918
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify