Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Morphology of multicore compound drops in oscillatory shear flows
 
  • Details

Morphology of multicore compound drops in oscillatory shear flows

Source
European Physical Journal Special Topics
ISSN
19516355
Date Issued
2023-06-01
Author(s)
Jadhav, Sayali N.
Ghosh, Uddipta  
DOI
10.1140/epjs/s11734-022-00722-3
Volume
232
Issue
6
Abstract
Dynamics and morphology of two-dimensional multicore (dual and triple core) compound drops, subjected to oscillating shear flows have been addressed in this work. We use the binary-phase-field method to deduce numerical solutions for the flow field and the droplet deformation characteristics. Our results reveal that depending on the geometric configuration, the inner cores as well as the outer drop may exhibit irregular temporal variations in the deformation, because of a relatively larger number of modes contributing to their shapes. We establish that displacement of the center of masses of the drops generally facilitates this irregular deformation pattern, while for stationary drops, smooth and periodic temporal variations in the shape are observed. As a result, the inner cores in multicore drops are far more prone to exhibit irregular shape variations, while the outer drops tend to follow similar trends when the inner cores are not symmetrically distributed with respect to the imposed flow. The time period of oscillation does not fundamentally alter the morphological characteristics, although it does increase the extent of deformation and impacts the phase lag between the deformation and the imposed flow. Our results may have important implications in characterizing the rheology of double emulsions, when subject to unsteady flows.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/25747
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify