Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. DNA-based Precision Tools to Probe and Program Mechanobiology and Organ Engineering
 
  • Details

DNA-based Precision Tools to Probe and Program Mechanobiology and Organ Engineering

Source
Small
ISSN
16136810
Date Issued
2025-03-12
Author(s)
Singh, Nihal
Sharma, Ayushi
Goel, Anjana
Kumar, Krishan
Solanki, Raghu
Bhatia, Dhiraj  
DOI
10.1002/smll.202410440
Volume
21
Issue
10
Abstract
DNA nanotechnology represents an innovative discipline that combines nanotechnology with biotechnology. It exploits the distinctive characteristics of deoxyribonucleic acid (DNA) to create nanoscale structures and devices with remarkable accuracy and functionality. Researchers may create complex nanostructures with precision and specialized functions using DNA's innate stability, adaptability, and capacity to self-assemble through complementary base-pairing interactions. Integrating multiple disciplines, known as nanobiotechnology, allows the production of sophisticated nanodevices with a broad range of applications. These include precise drug delivery systems, extremely sensitive biosensors, and the construction of intricate tissue scaffolds for regenerative medicine. Moreover, combining DNA nanotechnology with mechanobiology provides a new understanding of how small-scale mechanical stresses and molecular interactions affect cellular activity and tissue development. DNA nanotechnology has the potential to revolutionize molecular diagnostics, tissue engineering, and organ regeneration. This could lead to enormous improvements in biomedicine. This review emphasizes the most recent developments in DNA nanotechnology, explicitly highlighting its significant influence on mechanobiology and its growing involvement in organ engineering. It provides an extensive overview of present trends, obstacles, and future prospects in this fast-progressing area.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/28228
Subjects
cell patterning | DNA nanobiotechnology | mechanobiology | organ engineering | regenerative medicine | synthetic biology | tissue engineering
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify