Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Electrical Engineering
  4. EE Publications
  5. SS-SfP: neural inverse rendering for self-supervised shape from (mixed) polarization
 
  • Details

SS-SfP: neural inverse rendering for self-supervised shape from (mixed) polarization

Source
31st Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2023)
Date Issued
2023-10-10
Author(s)
Tiwari, Ashish
Raman, Shanmuganathan
DOI
10.2312/pg.20231265
Abstract
We present a novel inverse rendering-based framework to estimate the 3D shape (per-pixel surface normals and depth) of objects and scenes from single-view polarization images, the problem popularly known as Shape from Polarization (SfP). The existing physics-based and learning-based methods for SfP perform under certain restrictions, i.e., (a) purely diffuse or purely specular reflections, which are seldom in the real surfaces, (b) availability of the ground truth surface normals for direct supervision that are hard to acquire and are limited by the scanner's resolution, and (c) known refractive index. To overcome these restrictions, we start by learning to separate the partially-polarized diffuse and specular reflection components, which we call reflectance cues, based on a modified polarization reflection model and then estimate shape under mixed polarization through an inverse-rendering based self-supervised deep learning framework called SS-SfP, guided by the polarization data and estimated reflectance cues. Furthermore, we also obtain the refractive index as a non-linear least squares solution. Through extensive quantitative and qualitative evaluation, we establish the efficacy of the proposed framework over simple single-object scenes from DeepSfP dataset and complex in-the-wild scenes from SPW dataset in an entirely self-supervised setting. To the best of our knowledge, this is the first learning-based approach to address SfP under mixed polarization in a completely selfsupervised framework. Code will be made publicly available.
URI
https://d8.irins.org/handle/IITG2025/30825
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify