Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Axisymmetric Boundary Layer on a Cylinder
 
  • Details

Axisymmetric Boundary Layer on a Cylinder

Source
Springer Tracts in Mechanical Engineering
ISSN
21959862
Date Issued
2023-01-01
Author(s)
Bhoraniya, Rameshkumar
Swaminathan, Gayathri
Narayanan, Vinod  
DOI
10.1007/978-981-19-9574-3_5
Abstract
This chapter presents a linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at the inflow boundary, fully non-parallel and non-similar. Linearized Navier-Stokes (LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations and homogeneous boundary conditions form a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in the azimuthal direction. The Chebyshev spectral collocation method and Arnoldi’s iterative algorithm are used for the numerical solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wavenumbers. The largest imaginary part of the computed eigenmodes is negative; hence, the flow is temporally stable. The spatial structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while moving downstream. The global modes of the axisymmetric boundary layer are more stable than that of the 2D flat-plate boundary layer at low Reynolds number. However, at a higher Reynolds number, they approach to 2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at a low Reynolds number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least stable eigenmodes.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/27022
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify