GLOBAL WEAK SOLUTIONS OF A PARABOLIC-ELLIPTIC KELLER-SEGEL SYSTEM WITH GRADIENT DEPENDENT CHEMOTACTIC COEFFICIENTS
Source
Discrete and Continuous Dynamical Systems Series B
ISSN
15313492
Date Issued
2023-07-01
Author(s)
Abstract
We consider the following Keller-Segel system with gradient dependent chemotactic coefficient: {u<inf>t</inf> = ∆u − χ∇ · (uf(|∇v|)∇v), 0 = ∆v − v + g(u), in smooth bounded domains Ω ⊂ R<sup>n</sup>, n ≥ 1 with f(ξ) = (ξ<sup>p−</sup><sup>2</sup>(1+ξ<sup>p</sup>)<sup>q− p/p</sup>), 1 < q ≤ p < ∞ and g(ξ) = ξ/(1+ξ<inf>)</inf><sup>1-</sup><sup>β</sup>, ξ ≥ 0, β ∈ [0, 1]. We show the existence of a global weak solution, bounded in L<sup>∞</sup>-norm, if 1 < q ≤ p {< ∞, n = 1, 1 < q < <inf>n−</inf><sup>n</sup><inf>1</inf> , n ≥ 2.
Subjects
boundedness | Chemotaxis | global existence | quasilinear parabolic equations with p-Laplacian
