Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Humanities and Social Sciences
  4. HSS Publications
  5. GLOBAL WEAK SOLUTIONS OF A PARABOLIC-ELLIPTIC KELLER-SEGEL SYSTEM WITH GRADIENT DEPENDENT CHEMOTACTIC COEFFICIENTS
 
  • Details

GLOBAL WEAK SOLUTIONS OF A PARABOLIC-ELLIPTIC KELLER-SEGEL SYSTEM WITH GRADIENT DEPENDENT CHEMOTACTIC COEFFICIENTS

Source
Discrete and Continuous Dynamical Systems Series B
ISSN
15313492
Date Issued
2023-07-01
Author(s)
Jaiswal, Anjali
Rani, Poonam
Tyagi, Jagmohan  
DOI
10.3934/DCDSB.2023002
Volume
28
Issue
7
Abstract
We consider the following Keller-Segel system with gradient dependent chemotactic coefficient: {u<inf>t</inf> = ∆u − χ∇ · (uf(|∇v|)∇v), 0 = ∆v − v + g(u), in smooth bounded domains Ω ⊂ R<sup>n</sup>, n ≥ 1 with f(ξ) = (ξ<sup>p−</sup><sup>2</sup>(1+ξ<sup>p</sup>)<sup>q− p/p</sup>), 1 < q ≤ p < ∞ and g(ξ) = ξ/(1+ξ<inf>)</inf><sup>1-</sup><sup>β</sup>, ξ ≥ 0, β ∈ [0, 1]. We show the existence of a global weak solution, bounded in L<sup>∞</sup>-norm, if 1 < q ≤ p {< ∞, n = 1, 1 < q < <inf>n−</inf><sup>n</sup><inf>1</inf> , n ≥ 2.
Publication link
https://www.aimsciences.org/data/article/export-pdf?id=63dba15f82ad77137d15c688
URI
https://d8.irins.org/handle/IITG2025/26742
Subjects
boundedness | Chemotaxis | global existence | quasilinear parabolic equations with p-Laplacian
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify