Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Transport coefficients of hot magnetized QCD matter beyond the lowest Landau level approximation
 
  • Details

Transport coefficients of hot magnetized QCD matter beyond the lowest Landau level approximation

Source
European Physical Journal C
ISSN
14346044
Date Issued
2019-02-01
Author(s)
Kurian, Manu
Mitra, Sukanya
Ghosh, Snigdha
Chandra, Vinod  
DOI
10.1140/epjc/s10052-019-6649-z
Volume
79
Issue
2
Abstract
In this article, shear viscosity, bulk viscosity, and thermal conductivity of a QCD medium have been studied in the presence of a strong magnetic field. To model the quark–gluon plasma, an extended quasi-particle description of the hot QCD equation of state in the presence of the magnetic field has been adopted. The effects of higher Landau levels on the temperature dependence of viscous coefficients (bulk and shear viscosities) and thermal conductivity have been obtained by considering the 1 → 2 processes in the presence of the strong magnetic field. An effective covariant kinetic theory has been set up in (1+1)-dimensional that includes mean field contributions in terms of quasi-particle dispersions and magnetic field to describe the Landau level dynamics of quarks. The sensitivity of these parameters to the magnitude of the magnetic field has also been explored. Both the magnetic field and mean field contributions have seen to play a significant role in obtaining the temperature behaviour of the transport coefficients of the medium.
Publication link
https://link.springer.com/content/pdf/10.1140/epjc/s10052-019-6649-z.pdf
URI
https://d8.irins.org/handle/IITG2025/23355
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify