Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. On a theorem of A. I. Popov on sums of squares
 
  • Details

On a theorem of A. I. Popov on sums of squares

Source
Proceedings of the American Mathematical Society
ISSN
00029939
Date Issued
2017-01-01
Author(s)
Berndt, Bruce C.
Dixit, Atul  
Kim, Sun
Zaharescu, Alexandru
DOI
10.1090/proc/13547
Volume
145
Issue
9
Abstract
Let r<inf>k</inf> (n) denote the number of representations of the positive integer n as the sum of k squares. In 1934, the Russian mathematician A. I. Popov stated, but did not rigorously prove, a beautiful series transformation involving r<inf>k</inf> (n) and certain Bessel functions. We provide a proof of this identity for the first time, as well as for another identity, which can be regarded as both an analogue of Popov’s identity and an identity involving r<inf>2</inf>(n) from Ramanujan’s lost notebook.
Publication link
https://www.ams.org/proc/2017-145-09/S0002-9939-2017-13547-3/S0002-9939-2017-13547-3.pdf
URI
https://d8.irins.org/handle/IITG2025/22592
Subjects
Bessel functions | Dirichlet characters | Dirichlet series | Ramanujan’s lost notebook | Sums of squares | Voronoï summation formula
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify