Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Predictive Framework for the Spreading of Liquid Drops and the Formation of Liquid Marbles on Hydrophobic Particle Bed
 
  • Details

Predictive Framework for the Spreading of Liquid Drops and the Formation of Liquid Marbles on Hydrophobic Particle Bed

Source
Langmuir the ACS Journal of Surfaces and Colloids
Date Issued
2019-05-21
Author(s)
Mozhi Devan Padmanathan, Arul
Sneha Ravi, Apoorva
Choudhary, Hema
Varanakkottu, Subramanyan Namboodiri
Dalvi, Sameer V.  
DOI
10.1021/acs.langmuir.9b00698
Volume
35
Issue
20
Abstract
In this work, we have developed a model to describe the behavior of liquid drops upon impaction on hydrophobic particle bed and verified it experimentally. Poly(tetrafluoroethylene) (PTFE) particles were used to coat drops of water, aqueous solutions of glycerol (20, 40, and 60% v/v), and ethanol (5 and 12% v/v). The experiments were conducted for Weber number ( We) ranging from 8 to 130 and Reynolds number ( Re) ranging from 370 to 4460. The bed porosity was varied from 0.8 to 0.6. The experimental values of βmax (ratio of the diameter at the maximum spreading condition to the initial drop diameter) were estimated from the time-lapsed images captured using a high-speed camera. The theoretical βmax was estimated by making energy balances on the liquid drop. The proposed model accounts for the energy losses due to viscous dissipation and crater formation along with a change in kinetic energy and surface energy. A good agreement was obtained between the experimental βmax and the estimated theoretical βmax. The proposed model yielded a least % absolute average relative deviation (% AARD) of 5.5 ± 4.3 compared to other models available in the literature. Further, it was found that the liquid drops impacting on particle bed are completely coated with PTFE particles with βmax values greater than 2.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/23270
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify