Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Physics
  4. PHY Publications
  5. The star HIP 41378 potentially misaligned with its cohort of long-period planets
 
  • Details

The star HIP 41378 potentially misaligned with its cohort of long-period planets

Source
arXiv
ISSN
2331-8422
Date Issued
2025-07-01
Author(s)
Baliwal, Sanjay
Abstract
The obliquity between the stellar spin axis and the planetary orbit, detected via the Rossiter-McLaughlin (RM) effect, is a tracer of the formation history of planetary systems. While obliquity measurements have been extensively applied to hot Jupiters and short-period planets, they remain rare for cold and long-period planets due to observational challenges, particularly their long transit durations. We report the detection of the RM effect for the 19-hour-long transit of HIP 41378 f, a temperate giant planet on a 542-day orbit, observed through a worldwide spectroscopic campaign. We measure a slight projected obliquity of 21 \pm 8 degrees and a significant 3D spin-orbit angle of 52 \pm 6 degrees, based on the measurement of the stellar rotation period. HIP 41378 f is part of a 5-transiting planetary system with planets close to mean motion resonances. The observed misalignment likely reflects a primordial tilt of the stellar spin axis relative to the protoplanetary disk, rather than dynamical interactions. HIP 41378 f is the first non-eccentric long-period (P>100 days) planet observed with the RM effect, opening new constraints on planetary formation theories. This observation should motivate the exploration of planetary obliquities across a longer range of orbital distances through international collaboration.
URI
https://doi.org/10.48550/arXiv.2507.01807
https://d8.irins.org/handle/IITG2025/18611
Subjects
Planets and satellites
Individual
HIP41378
Techniques-spectroscopic
Stars-rotation
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify