Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Emission and Color Tuning of Cyanostilbenes and White Light Emission
 
  • Details

Emission and Color Tuning of Cyanostilbenes and White Light Emission

Source
ACS Omega
Date Issued
2018-12-14
Author(s)
Kumari, Beena
Paramasivam, Mahalingavelar
Dutta, Arnab
Kanvah, Sriram  
DOI
10.1021/acsomega.8b02775
Volume
3
Issue
12
Abstract
White-light-emitting diodes are energy efficiency replacement of conventional lighting sources. Herein, we report the luminescent behavior of three simple cyanostilbenes with triphenylamine-donating groups bearing different electron-withdrawing groups (phenyl, pyridyl, and p-nitrophenyl) in a common donor (D)âÏ€-acceptor (A) α-cyanostilbene construct along with their thermal and electrochemical properties. The density functional theory (DFT) studies reveal that aggregation-induced emission characteristic feature of the DâÏ€-A dyes is inversely proportional to the intramolecular charge transfer (ICT) effect, that is, phenyl-and pyridyl-substituted compounds show characteristic aggregation-induced emission in water, whereas the ICT effect is dominant for the nitro derivative. The extent of ICT and the solvatochromic emission shifts, from blue to red, depend on the strength of the electron-withdrawing group. White luminescence and tunable emission colors are obtained by careful admixtures of these cyanostilbenes bearing triphenylamines. The results rationalized through DFT and time-dependent DFT calculations follow a consistent trend with the energy levels measured from the electrochemical and optical studies. Thermogravimetric analysis and differential scanning calorimetry studies showed excellent thermal stability of the compounds. The scanning electron microscopy and dynamic light scattering measurements were performed to reveal the formation of aggregates. This strategy involving synthetically simple and structurally similar molecules with different emission properties has potential applications in the fabrication of multicolor and white-light-emitting materials.
Publication link
https://doi.org/10.1021/acsomega.8b02775
URI
https://d8.irins.org/handle/IITG2025/22686
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify