Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Computer Science and Engineering
  4. CSE Publications
  5. Sparse graph representations for procedural instructional documents
 
  • Details

Sparse graph representations for procedural instructional documents

Source
arXiv
Date Issued
2024-02-01
DOI
10.48550/arXiv.2402.03957
Abstract
Computation of document similarity is a critical task in various NLP domains that has applications in deduplication, matching, and recommendation. Traditional approaches for document similarity computation include learning representations of documents and employing a similarity or a distance function over the embeddings. However, pairwise similarities and differences are not efficiently captured by individual representations. Graph representations such as Joint Concept Interaction Graph (JCIG) represent a pair of documents as a joint undirected weighted graph. JCIGs facilitate an interpretable representation of document pairs as a graph. However, JCIGs are undirected, and don't consider the sequential flow of sentences in documents. We propose two approaches to model document similarity by representing document pairs as a directed and sparse JCIG that incorporates sequential information. We propose two algorithms inspired by Supergenome Sorting and Hamiltonian Path that replace the undirected edges with directed edges. Our approach also sparsifies the graph to O(n) edges from JCIG's worst case of O(n2). We show that our sparse directed graph model architecture consisting of a Siamese encoder and GCN achieves comparable results to the baseline on datasets not containing sequential information and beats the baseline by ten points on an instructional documents dataset containing sequential information.
URI
https://d8.irins.org/handle/IITG2025/19861
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify