Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. The swirling pendulum: Conceptualization, modeling, equilibria and control synthesis
 
  • Details

The swirling pendulum: Conceptualization, modeling, equilibria and control synthesis

Source
ASME 2020 Dynamic Systems and Control Conference Dscc 2020
Date Issued
2020-01-01
Author(s)
Kadam, Sujay D.
D'Souza, Alrick
Raj, Nidhish
Shah, Utsav
Shanthamurthy, Prajwal Gowdru
Banavar, Ravi N.
Palanthandalam-Madapusi, Harish J.  
DOI
10.1115/DSCC2020-3140
Volume
1
Abstract
This paper introduces the swirling pendulum, a two-link, two degree-of-freedom mechanism which is under-actuated and has an unusual non-planar coupling with axis of rotation of the two links being perpendicular to each other. The swirling pendulum mechanism, while being simple to mathematically represent and easy to physically construct, exhibits several properties like loss of inertial coupling, loss of relative degree, multiple stable and unstable equilibrium points. These properties are unique as well as interesting from dynamics and controls point of view which make the swirling pendulum an excellent test-bed for testing various ideas in control and demonstrating several notions associated with systems and control theory. In this paper, we discuss the modeling of the swirling pendulum mechanism based on Lagrange's equation along with an analysis related to equilibrium points and their stability. We also present simulation results for regulatory as well as tracking control tasks through simulations on a non-linear model using control methods like LQR, lead compensator and system inversion-based control to demonstrate the utility of the proposed mechanism in the area of systems, control and dynamics. Furthermore, we also discuss experimental results for controls applied on a real-time hardware setup.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/25715
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify