Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Earth Sciences
  4. ES Publications
  5. Post-LGM glacial retreat drives aggradation in the interiors of the Kashmir Himalaya
 
  • Details

Post-LGM glacial retreat drives aggradation in the interiors of the Kashmir Himalaya

Source
EarthArXiv
Date Issued
2021-06-01
Author(s)
Dey, Saptarshi
Chauhan, Naveen
Vashistha, Anushka
Jain, Vikrant
DOI
10.31223/X5M91G
Abstract
Understanding the response of glaciated catchments to climate change is fundamental for assessing sediment transport from the high-elevation, semi-arid to arid sectors in the Himalaya to the foreland basin. The fluvioglacial sediments stored in the semi-arid Padder valley in the Kashmir Himalaya record valley aggradation during ~19-11 ka. We relate the valley aggradation to increased sediment supply from the deglaciated catchment during the glacial-to-interglacial phase transition. Previously-published bedrock-exposure ages in the upper Chenab valley suggest ~180 km retreat of the valley glacier during ~20-15 ka. Increasing roundness of sand-grains and reducing mean grain-size from the bottom to the top of the valley-fill sequence hint about increasing fluvial transport with time and corroborate with the glacial retreat history. Our result also correlates well with late Pleistocene-early Holocene sediment aggradation observed across most Western Himalayan valleys. It highlights the spatiotemporal synchronicity of sediment transfer from the Himalayas triggered by climate change.
Publication link
http://eartharxiv.org/repository/object/2487/download/5085/
URI
https://d8.irins.org/handle/IITG2025/19688
Subjects
Deglaciation
Last Glacial Maximum
Luminescence dating
Kashmir Himalaya
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify