Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Multiday Precipitation Is a Prominent Driver of Floods in Indian River Basins
 
  • Details

Multiday Precipitation Is a Prominent Driver of Floods in Indian River Basins

Source
Water Resources Research
ISSN
00431397
Date Issued
2022-07-01
Author(s)
Nanditha, J. S.
Mishra, Vimal  
DOI
10.1029/2022WR032723
Volume
58
Issue
7
Abstract
India witness floods during the summer monsoon (June–September) that disproportionately affect the socioeconomic well-being of millions of people. Nonstructural measures such as flood early warning systems play a crucial role in mitigating the impacts; however, these require a proper understanding of flood drivers. The drivers of floods in the Indian river basins have not been examined for the observed and projected future climate. Here using a novel framework, we examine antecedent moisture conditions and precipitation characteristics before high flow events. We estimate the probability of occurrence of flood drivers and their association with peak flood magnitude under the observed and projected future climate in Indian river basins. Multiday precipitation, a proxy to heavy precipitation on wet soil conditions, was found as the predominant flood driver in the observed and projected future climate. We show that multiday precipitation is more prominent driver than extreme soil moisture conditions in larger rivers basins while extreme precipitation drives floods in smaller river basins. The frequency of major drivers of floods is projected to rise in the future, which may pose a greater risk to agriculture and infrastructure under the warming climate.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/26009
Subjects
climate change | extreme precipitation | flood drivers | floods | river basins
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify