Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Mathematics
  4. MATH Publications
  5. The generalized modified Bessel function Kz,w(x) at z=1/2 and Humbert functions,
 
  • Details

The generalized modified Bessel function Kz,w(x) at z=1/2 and Humbert functions,

Date Issued
2018-10-01
Author(s)
Kumar, Rahul
Abstract
Recently Dixit, Kesarwani, and Moll introduced a generalization Kz,w(x) of the modified Bessel function Kz(x) and showed that it satisfies an elegant theory similar to Kz(x). In this paper, we show that while K12(x) is an elementary function, K12,w(x) can be written in the form of an infinite series of Humbert functions. As an application of this result, we generalize the transformation formula for the logarithm of the Dedekind eta function ?(z).
URI
http://arxiv.org/abs/1810.03093
https://d8.irins.org/handle/IITG2025/20050
Subjects
Classical Analysis
ODEs
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify