Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Brain Activity Recognition using Deep Electroencephalography Representation
 
  • Details

Brain Activity Recognition using Deep Electroencephalography Representation

Source
Apscon 2023 IEEE Applied Sensing Conference Symposium Proceedings
Date Issued
2023-01-01
Author(s)
Johri, Riddhi
Pandey, Pankaj
Miyapuram, Krishna Prasad  
Lomas, Derek
DOI
10.1109/APSCON56343.2023.10100986
Abstract
Advances in neurotechnology have enhanced and simplified our ability to research brain activity with low-cost and effective equipment. One such scalable and noninvasive technique is Electroencephalography (EEG), which detects and records electrical brain activity. Brain activity recognition is one of the emerging problems as EEG wearables become more readily available. Our research has modeled EEG signals to classify three states (i) music listening, (ii) movie watching, and (iii) meditating. The datasets incorporating the brain signals induced while performing these activities are NMED-T for music listening, SEED for movie watching, and VIP_Y_HYT for meditating. EEG activity is transformed into deep representation using a convolutional neural network comprising three different types of 2D convolutions: Temporal, Spatial, and Separable, to capture dependencies and extract high-level features from the data. The Depthwise Convolution function is responsible for learning spatial filters within each temporal convolution, and combining these spatial filters across all temporal bands optimally is learned by the Separable Convolutions. EEGNet and EEGNet-SSVEP are specially designed for EEG Signal Processing and Classification, and the DeepConvNet has incorporated more convolution layers. Our finding demonstrates that increasing the number of layers in the Network provided a higher accuracy of 99.94% using DeepConvNet. In contrast, the accuracy of EEGNet and EEGNet-SSVEP resulted in 85.63% and 75.76%, respectively.
Publication link
https://repository.tudelft.nl/file/File_4f8a42c5-7f96-4eff-ae13-c50bbb4cfc16
URI
https://d8.irins.org/handle/IITG2025/27016
Subjects
Brain Activity | EEG Sensor | Human-Centered Computing | Machine Learning
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify