Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Unboundedness of the first Betti number and the last Betti number of numerical semigroups generated by concatenation
 
  • Details

Unboundedness of the first Betti number and the last Betti number of numerical semigroups generated by concatenation

Source
Indian Journal of Pure and Applied Mathematics
ISSN
00195588
Date Issued
2024-06-01
Author(s)
Mehta, Ranjana
Saha, Joydip
Sengupta, Indranath  
DOI
10.1007/s13226-023-00400-7
Volume
55
Issue
2
Abstract
We show that the minimal number of generators and the Cohen-Macaulay type of a family of numerical semigroups generated by concatenation of arithmetic sequences is unbounded.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/26426
Subjects
13P10 | Apéry set | Betti numbers | Cohen-Macaulay type | Frobenius number | Monomial curves | Numerical semigroups | Primary 13C40 | Pseudo-Frobenius set
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify