Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. On the parameterized complexity of colorful components and related problems
 
  • Details

On the parameterized complexity of colorful components and related problems

Source
Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics
ISSN
03029743
Date Issued
2018-01-01
Author(s)
Misra, Neeldhara  
DOI
10.1007/978-3-319-94667-2_20
Volume
10979 LNCS
Abstract
The colorful components framework is motivated by applications emerging from computational biology. A vertex-colored graph G is said to be colorful if every color appears exactly once. The general goal is to remove a collection of edges from an undirected vertex-colored graph G such that in the resulting graph H all the connected components are colorful. We want H to optimize an appropriate objective function. Two natural functions involve deleting the smallest number of edges (which we refer to as Colorful Components) and maximizing the number of edges in the transitive closure of the remaining components (which we refer to as MEC). These problems are well-studied from the point of view of classical complexity, approximation algorithms, and parameterized algorithms. We complement and improve on some of the results in the literature concerning MEC and Colorful Components. In the context of MEC, we demonstrate a linear kernel on trees and a randomized k<sup>O(k)</sup> algorithm, where k is the standard parameter. Both of these results directly improve on previously known results about the problem. For the Colorful Components problem, we demonstrate a FPT algorithm for the vertex cover parameter, which is a well-motivated structural parameterization given that the problem is already para-NP-hard when parameterized by a deletion set to a disjoint union of stars.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/22947
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify