Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Heat Transfer and Materials Flow Modeling of FSW for CuCrZr Alloy Using Experimentally Determined Thermo-Physical Properties
 
  • Details

Heat Transfer and Materials Flow Modeling of FSW for CuCrZr Alloy Using Experimentally Determined Thermo-Physical Properties

Source
Metallurgical and Materials Transactions A Physical Metallurgy and Materials Science
ISSN
10735623
Date Issued
2021-02-01
Author(s)
Jha, Kaushal
Sahlot, Pankaj
Singh, Amit Kumar
Kumar, Santosh
Arora, Amit  
Singh, R. N.
Dey, G. K.
DOI
10.1007/s11661-020-06107-2
Volume
52
Issue
2
Abstract
A three-dimensional heat transfer and material flow-based model using experimentally measured thermo-physical properties has been developed for friction stir welding (FSW) of Cu-0.8Cr-0.1Zr alloy. CuCrZr alloy is a precipitation-hardened copper alloy with good electrical and thermal conductivity and moderate strength at elevated temperatures. The temperature-dependent specific heat, thermal conductivity, and yield strength of the alloy were determined experimentally to develop a reliable and accurate numerical model. The results from numerical model were validated by performing suitable experiments for numerous tool rotational speeds and welding speeds during joining of 3-mm-thick CuCrZr alloy on a dedicated FSW machine. The temperature evolution across the welds was measured using thermocouples. The results from the developed numerical model were validated by comparing it with the measured weld thermal cycles, peak temperatures, and thermo-mechanically-affected zone (TMAZ) for various welds. Validation was also supported with microstructural evidences from the weld nugget zone and TMAZ. The developed model showed the capability to simulate FSW of CuCrZr alloy and predict the important results with reasonably good accuracy
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/25548
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify