Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
 
  • Details

HMM-based models of control room operator's cognition during process abnormalities. 2. Application to operator training

Source
Journal of Loss Prevention in the Process Industries
ISSN
09504230
Date Issued
2022-05-01
Author(s)
Shahab, Mohammed Aatif
Iqbal, Mohd Umair
Srinivasan, Babji
Srinivasan, Rajagopalan
DOI
10.1016/j.jlp.2022.104749
Volume
76
Abstract
Operator training is critical to ensure safe operation in safety-critical domains such as chemical process industries. Training enhances the operator's understanding of the process, which is then encapsulated as mental models. Typically, the operator's learning in traditional training programs is assessed using expert judgment or in terms of process- and operator action-based metrics. These assessment schemes, however, ignore the cognitive aspects of learning, such as mental model development and cognitive workload. The HMM-based model proposed in Part 1 offers a systematic way to quantify operators' cognition during abnormalities. In this Part 2, we show that the cognitive behaviors displayed by expert operators can be represented as target values on the HMM's state transitions and emission probability distributions. Further, we propose two axioms of learning that can capture the evolution of the operator's mental models as they learn the causal relationships in the process and gain expertise in handling abnormal situations. We validate the proposed axioms by conducting training experiments involving 10 participants performing 486 tasks. Our results reveal that the axioms can accurately assess the progress of operators' learning.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/26089
Subjects
Eye-tracking | Hidden markov model | Learning | Mental models | Operator training
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify