Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. A Framework for Efficient Information Aggregation in Smart Grid
 
  • Details

A Framework for Efficient Information Aggregation in Smart Grid

Source
IEEE Transactions on Industrial Informatics
ISSN
15513203
Date Issued
2019-04-01
Author(s)
Joshi, Amit
Das, Laya
Natarajan, Balasubramaniam
Srinivasan, Babji
DOI
10.1109/TII.2018.2866302
Volume
15
Issue
4
Abstract
The two-way communication of information between agents in the smart grid, while making way for better monitoring and control, comes at the cost of elevated communication traffic. Compressive sensing is a technique that exploits sparsity of power consumption data (in the Haar basis) and achieves sub-Nyquist compression. Household power consumption data, however, have varying sparseness due to, for example, multistate appliances. Compressing this data with a fixed ratio can lead to nonoptimal results (less compression or large reconstruction error). In this regard, a dynamic compression scheme that estimates a signal's sparsity and decides the amount of compression is desirable. We demonstrate that this approach, when applied with existing estimators of sparsity, has its limitations in overemphasizing one objective compared to the other. We propose a new measure derived from coefficient of variation and demonstrate that it achieves a better tradeoff between reconstruction performance and compression ratio. In addition, we employ a dynamic spatial compression scheme to account for spatial correlation between data of neighboring nodes and present a framework that incorporates dynamic temporal and spatial compression. We present the results on three publicly available datasets at different sampling rates and outline key findings of the study.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/22658
Subjects
Coefficient of variation (CV) | compressive sensing (CS) | principal component analysis | sparsity
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify