Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. A Novel Principle for Transparent Applications of Force Impulses in Cable-Driven Rehabilitation Systems
 
  • Details

A Novel Principle for Transparent Applications of Force Impulses in Cable-Driven Rehabilitation Systems

Source
Actuators
Date Issued
2025-05-01
Author(s)
Olenšek, Andrej
Zadravec, Matjaž
Tomc, Matej
Mamidi, Teja Krishna
Vashista, Vineet  
Matjačić, Zlatko
DOI
10.3390/act14050233
Volume
14
Issue
5
Abstract
A critical requirement for rehabilitation robots is achieving high transparency in user interaction to minimize interference when assistance is unnecessary. Cable-driven systems are a compelling alternative to rigid-link robots due to their lighter weight and reduced inertia, enhancing transparency. However, controlling cable tension forces remains a significant challenge, as these forces directly affect the interaction between the user and the robot. Effective strategies must maintain low tension during non-assistive phases while preventing slackness. This paper introduces PACE-R (Passive Active CablE Robot), a novel lightweight actuation system for cable-driven rehabilitation devices. The PACE-R module utilizes remote actuation and an open-loop, discrete state control, where the cable is coupled to the motor only during active intervention. When not assisting, the cable is passively decoupled from the motor, and a low-stiffness spring maintains minimal tension, enabling high transparency. Benchtop tests showed that the module consistently produced force impulses proportional to motor input with delays not exceeding 15 ms. In the treadmill push-off assistance demonstration, PACE-R contributed about 20% to total ankle moment and power. Transparency analysis revealed negligible interference, with only 1% and 0.5% contributions to peak total ankle moment and power, respectively.
Publication link
https://www.mdpi.com/2076-0825/14/5/233/pdf?version=1746629090
URI
https://d8.irins.org/handle/IITG2025/28154
Subjects
ankle exoskeleton | cable-driven rehabilitation robots | gait rehabilitation | push-off assistance | transparency of rehabilitation robots
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify