Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Unboundedness of Betti numbers of curves
 
  • Details

Unboundedness of Betti numbers of curves

Source
ACM Communications in Computer Algebra
ISSN
19322232
Date Issued
2018-09-01
Author(s)
Mehta, Ranjana
Saha, Joydip
Sengupta, Indranath  
DOI
10.1145/3313880.3313895
Volume
52
Issue
3
Abstract
Bresinsky defined a class of monomial curves in A <sup>4</sup> with the property that the minimal number of generators or the first Betti number of the defining ideal is unbounded above. We prove that the same behaviour of unboundedness is true for all the Betti numbers and construct an explicit minimal free resolution for this class. We also propose a general construction of such curves in arbitrary embedding dimension.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/23454
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify