Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Fast likelihood evaluation using meshfree approximations for reconstructing compact binary sources
 
  • Details

Fast likelihood evaluation using meshfree approximations for reconstructing compact binary sources

Source
Physical Review D
ISSN
24700010
Date Issued
2023-09-15
Author(s)
Pathak, Lalit
Reza, Amit
Sengupta, Anand S.  
DOI
10.1103/PhysRevD.108.064055
Volume
108
Issue
6
Abstract
Several rapid parameter estimation methods have recently been advanced to deal with the computational challenges of the problem of Bayesian inference of the properties of compact binary sources detected in the upcoming science runs of the terrestrial network of gravitational wave detectors. Some of these methods are well-optimized to reconstruct gravitational wave signals in nearly real-time necessary for multimessenger astronomy. In this context, this work presents a new, computationally efficient algorithm for fast evaluation of the likelihood function using a combination of numerical linear algebra and meshfree interpolation methods. The proposed method can rapidly evaluate the likelihood function at any arbitrary point of the sample space at a negligible loss of accuracy and is an alternative to the grid-based parameter estimation schemes. We obtain posterior samples over model parameters for a canonical binary neutron star system by interfacing our fast likelihood evaluation method with the nested sampling algorithm. The marginalized posterior distributions obtained from these samples are statistically identical to those obtained by brute force calculations. We find that such Bayesian posteriors can be determined within a few minutes of detecting such transient compact binary sources, thereby improving the chances of their prompt follow-up observations with telescopes at different wavelengths. It may be possible to apply the blueprint of the meshfree technique presented in this study to Bayesian inference problems in other domains.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/26639
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify