Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Statistical analysis of the unique characteristics of secondary structures in proteins
 
  • Details

Statistical analysis of the unique characteristics of secondary structures in proteins

Source
Computational Biology and Chemistry
ISSN
14769271
Date Issued
2024-12-01
Author(s)
Singh, Nitin Kumar
Agarwal, Manish
Radhakrishna, Mithun  
DOI
10.1016/j.compbiolchem.2024.108237
Volume
113
Abstract
Protein folding is a complex process influenced by the primary sequence of amino acids. Early studies focused on understanding whether the specificity or the conservation of properties of amino acids was crucial for folding into secondary structures such as α-helices, β-sheets, turns, and coils. However, with the advent of artificial intelligence (AI) and machine learning (ML), the emphasis has shifted towards the precise nature and occurrence of specific amino acids. In our study, we analyzed a large set of proteins from diverse organisms to identify unique features of secondary structures, particularly in terms of the distribution of polar, non-polar, and charged amino acid residues. We found that α-helices tend to have a higher proportion of charged and non-polar groups compared to other secondary structures and that the presence of oppositely charged amino acid residues in helices stabilizes them, facilitating the formation of longer helices. These characteristics are distinct to α-helices. This study offers valuable insights for researchers in the field of protein design, enabling the de-novo creation of short helical peptides for a range of applications. We have also developed a web server for extensive analysis of proteins from different databases. The web server is housed at https://proseqanalyser.iitgn.ac.in/
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/28628
Subjects
Amino acids | Machine Learning | Proteins | Secondary structure | α-helix
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify