Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Mathematics
  4. MATH Publications
  5. Asymptotic behaviour of the least energy solutions of fractional semilinear Neumann problem
 
  • Details

Asymptotic behaviour of the least energy solutions of fractional semilinear Neumann problem

Source
arXiv
Date Issued
2023-01-01
Author(s)
Gandal, Somnath
Tyagi, Jagmohan
Abstract
We establish the asymptotic behaviour of the least energy solutions of the following nonlocal Neumann problem:d(-?)su + u = |u|p-1 u in ?, Nsu = 0 in Rn \ ?, u > 0 in ?,where ? ? Rn is a bounded domain of class C1,1, 1 < p < n+s/n?s, n > max {1, 2s} , 0 < s < 1, d > 0 and Nsu is the nonlocal Neumann derivative. We show that for small d, the least energy solutions ud of the above problem achieves L? bound independent of d. Using this together with suitable Lr-estimates on ud, we show that least energy solution ud achieve maximum on the boundary of ? for d sufficiently small.
URI
https://arxiv.org/abs/2301.03260
https://d8.irins.org/handle/IITG2025/20108
Subjects
Neumann problem
Asymptotic behaviour
Keller-Segel models
Energy solutions
Fractional Laplacian
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify