Cohen-Macaulay permutation graphs
Source
arXiv
Date Issued
2023-10-01
Author(s)
Cheri, P. V.
Dey, Deblina
K, Akhil
Kotal, Nirmal
Veer, Dharm
Abstract
In this article, we characterize Cohen-Macaulay permutation graphs. In particular, we show that a permutation graph is Cohen-Macaulay if and only if it is well-covered and there exists a unique way of partitioning its vertex set into r disjoint maximal cliques, where r is the cardinality of a maximal independent set of the graph. We also provide some sufficient conditions for a comparability graph to be a uniquely partially orderable (UPO) graph.
