Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. One-loop effective action in chiral Einstein-Cartan gravity
 
  • Details

One-loop effective action in chiral Einstein-Cartan gravity

Source
International Journal of Modern Physics A
ISSN
0217751X
Date Issued
2023-12-30
Author(s)
Chattopadhyay, Pratik
DOI
10.1142/S0217751X23501865
Volume
38
Issue
35-36
Abstract
In chiral Einstein-Cartan gravity, a new gauge fixing procedure is implemented recently, leading to a very economical perturbation expansion of the action. Using this formulation and the relevant gauge fixing, we develop the ghost Lagrangian on an arbitrary Einstein background using the Becchi-Rouet-Stora-Tyutin (BRST) formalism. The novelty is the appearance of a new term quadratic in the tetrad field. We next compute the heat kernel coefficients and understand the divergences arising in the gravitational one-loop effective action. In our computation, the arising heat kernel coefficients depend only on the self-dual part of the Weyl curvature. We make a comparison between our results and what has been obtained for metric general relativity.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/29259
Subjects
effective action | Einstein-Cartan gravity | heat kernel
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify