Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. The Neumann problem for a class of semilinear fractional equations with critical exponent
 
  • Details

The Neumann problem for a class of semilinear fractional equations with critical exponent

Source
Bulletin Des Sciences Mathematiques
ISSN
00074497
Date Issued
2023-11-01
Author(s)
Gandal, Somnath
Tyagi, Jagmohan  
DOI
10.1016/j.bulsci.2023.103322
Volume
188
Abstract
We establish the existence of solutions to the following semilinear Neumann problem for fractional Laplacian and critical exponent: {(−Δ)<sup>s</sup>u+λu=|u|<sup>p−1</sup>uinΩ,N<inf>s</inf>u(x)=0inR<sup>n</sup>∖Ω‾,u≥0inΩ, where λ>0 is a constant and Ω⊂R<sup>n</sup> is a bounded domain with smooth boundary. Here, [Formula presented], s∈(0,1). Due to the critical exponent in the problem, the corresponding functional J<inf>λ</inf> does not satisfy the Palais-Smale (PS)-condition and therefore one cannot use standard variational methods to find the critical points of J<inf>λ</inf>. We overcome such difficulties by establishing a bound for Rayleigh quotient and with the aid of nonlocal version of the Cherrier's optimal Sobolev inequality in bounded domains. We also show the uniqueness of these solutions in small domains.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/26570
Subjects
Existence and uniqueness | Fractional Laplacian | Positive solutions | Semilinear Neumann problem
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify