Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Chemical Engineering
  4. CHE Publications
  5. Chemical exfoliation of layered superconductors: an avenue to synthesize boron-rich quasi two dimensional nanostructures
 
  • Details

Chemical exfoliation of layered superconductors: an avenue to synthesize boron-rich quasi two dimensional nanostructures

Source
APS March Meeting 2015
Date Issued
2015-02-03
Author(s)
Das, Saroj Kumar
James, Asha Liza
Jasuja, Kabeer
Abstract
Zero-dimensional and one-dimensional boron based nanostructures have presented excellent avenues in the past for utilizing the fascinating science of boron at the atomic level. The research on synthesizing two-dimensional (2-D) boron-based nanostructures is currently in its incipient stages. In this talk, we demonstrate two chemical approaches that yield quasi 2-D boron-rich nanostructures by enabling an exfoliation of a layered boron-based superconductor. While one approach employs the simple tool of ultrasonication in an aqueous phase, the other approach utilizes a chelation mediated strategy based on coordination of metal ions and organic ligands. Both these synthetic routes are shown to result in a processable colloidal dispersion of nanosheets. This talk will present details of the two exfoliation approaches and a comprehensive study of the morphological, chemical and optical properties of the dispersed nanosheets. We will demonstrate that the exfoliated nanosheets undergo an in-situ chemical modification with ionizable functional groups derived from solvent that enable electrostatic stabilization. We will further shown that this functionalization modifies the band structure of the nanosheets which gives rise to photoluminescence and result in physico-chemical properties distinct from the parent superconductor. This ability to synthesize quasi 2-D boron rich nanostructures significantly adds to the current state of literature on born-based quasi-planar nanostructures.
URI
https://d8.irins.org/handle/IITG2025/30399
Subjects
Chemical exfoliation
Nanostructures
Superconductors
Zero-dimensional
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify